Section A. Quantum Mechanics

1. (Quantum Zeno effect) A two-level quantum system is represented as a spin- $\frac{1}{2}$ entity, evolving under the Hamiltonian

$$
H=\hbar \overrightarrow{\boldsymbol{B}} \cdot \vec{\sigma}
$$

with $\overrightarrow{\boldsymbol{B}}=\{b, 0,0\}$ pointing in the x direction, and $\vec{\sigma}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\}$ the Pauli spin matrices:

$$
\boldsymbol{\sigma}_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \boldsymbol{\sigma}_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \boldsymbol{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

The system is prepared in the state $\sigma_{z}=+1$ at time $t_{0}=0$.
The following questions concerns the results of measuring the quantity σ_{z} at later times, assuming the measurement itself does not change the value of σ_{z} (though of course it cannot preserve the relative phase between the states $\left|\sigma_{z}=1\right\rangle$ and $\left.\left|\sigma_{z}=-1\right\rangle\right)$.
a) What is the probability of finding the system in the flipped state, $\sigma_{z}=-1$, at time $t_{1}>0$?
b) The measurement is repeated at time $t_{2}=t_{1}+\tau$, after recording the value of σ_{z} at time t_{1} (either $\sigma_{z}=+1$ or $\sigma_{z}=-1$). What is the probability that the system will be found at the state $\sigma_{z}=-1$ at t_{1} ?
c) Next, re-starting from the state $\sigma_{z}=+1$ the observer begins to measure σ_{z} repeatedly at intervals $\tau \ll b^{-1}$, up to time $T(\gg \tau)$, that is at times $t_{n}=n \tau$ with $n=1,2,3, \ldots, T / \tau$. How small should τ be made in order to reduce the probability of finding the system at time T in the flipped state ($\sigma_{z}=-1$) to less than $p_{0}=0.1$?

