3. The Hamiltonian for the spin degrees of freedom of Positronium in a magnetic field in the z-direction is given by

$$
\begin{equation*}
H=\alpha \vec{\sigma}^{(1)} \cdot \vec{\sigma}^{(2)}+\beta\left(\sigma_{z}^{(1)}-\sigma_{z}^{(2)}\right), \tag{1}
\end{equation*}
$$

where α and β are constants and $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ denotes the vector of Pauli matrices (listed in problem QM1).
a) As a warm-up: describe the degeneracy of the energy levels of the Hamiltonian at $\beta=0$.
b) Calculate the eigenvalues and describe (to the extent that you can without writing 'messy' expressions) the eigenvectors of H.

