2. A system of two indistinguishable spin-1/2 particles is governed by the Hamiltonian

$$H = \frac{|\vec{p}_1|^2}{2m} + \frac{|\vec{p}_2|^2}{2m} + \lambda \frac{\vec{\sigma_1} \cdot \vec{\sigma_2}}{|\vec{x_1} - \vec{x_2}|} \ ,$$

where $\vec{\sigma_k}$ (k=1,2) are the Pauli spin operators of the two particles, and $\vec{p_k}$, $\vec{x_k}$ are their (3-dimensional) momenta and positions, respectively. Find the ground state energies for the two cases:

- (a) $\lambda > 0$.
- **(b)** $\lambda < 0$.
- (c) For each sign of λ specify also the degeneracy of the ground state, in the center of mass frame.