3. A system of two massive particles, of spins $s_a > 0$ and $s_b > 0$, is governed by the Hamiltonian:

$$H = K + V(|\vec{r}_a - \vec{r}_b|) + f(|\vec{r}_a - \vec{r}_b|) \left(S_z^{(a)} - S_z^{(b)}\right) ,$$

with K the usual kinetic energy operator and $\vec{S}^{(a)}$ and $\vec{S}^{(b)}$ the spin operators. The function f is negative at all distances: f(r) < 0, and the interaction potential V(r) is finite and sufficiently attractive so that the system has at least one bound state. Let $\vec{S} = \vec{S}^{(a)} + \vec{S}^{(b)}$ be the total spin operator.

- a) Explain why this system's ground state is non-degenerate.
- b) What are the ground-state expectation values of the total spin's component S_z , and of the total spin operator $|\vec{S}|^2$? For which of these operators is the ground state also an eigenfunction?
- c) Consider now the case $s_a=1$, $s_b=1/2$. List the possible values of $|\vec{S}|^2$ and S_z . What are the probabilities of observing these outcomes when $|\vec{S}|^2$ and S_z are measured in the system's ground state?