Problem 0, Page
 Section B. Statistical Mechanics and Thermodynamics

1. Consider a liquid placed in a very wide container that is in thermal equilibrium at temperature T with its surroundings. Let $z(\vec{r})$ be the height of the liquid at point $\vec{r}=(x, y)$ defined such that the equilibrium height in absence of thermal fluctuations is $z(\vec{r})=0$. For small deviations around the equilibrium, the potential energy is approximately

$$
E_{\mathrm{pot}} \approx E_{0}+\frac{1}{2} \int d x d y\left[\sigma\left(\frac{\partial z}{\partial x}\right)^{2}+\sigma\left(\frac{\partial z}{\partial y}\right)^{2}+\rho g z^{2}\right]
$$

where E_{0} is a constant, σ is the surface tension, ρ is the difference between the density of the liquid and that of the gas, and g is the gravitational acceleration.
(a) For a periodic box of side length L, express the potential energy $E_{\text {pot }}$ in terms of the Fourier coefficients $A(\vec{k})$ defined by

$$
z(\vec{r})=\frac{1}{L} \sum_{\vec{k}} e^{i \vec{k} \cdot \vec{r}} A(\vec{k})
$$

where $A(-\vec{k})=A(\vec{k})^{*}$ and $\vec{k}=\left(k_{x}, k_{y}\right)=\frac{2 \pi}{L}\left(n_{x}, n_{y}\right)$ (with n_{x} and n_{y} integers).
(b) Due to thermal fluctuations,

$$
\left.\left.\langle | A(\vec{k})\right|^{2}\right\rangle=\frac{1}{a \vec{k}^{2}+b}
$$

as long as $|\vec{k}|$ is below a certain cutoff. What are the values of a and b at temperature T, in terms of the model's parameters (σ, ρ, T, L) ?
(c) Find an approximate expression for the r.m.s. width $W=\sqrt{\left\langle z(\vec{r})^{2}\right\rangle}$, for wide containers, in terms of a, b, and the maximal value $k_{\max }$ of $|\vec{k}|$. Assume also that $k_{\max }^{2} \gg b / a$.

Hint: modes with different wavevectors are not correlated, and thus $\left\langle A(\vec{k}) A\left(\vec{k}^{\prime}\right)^{*}\right\rangle=$ 0 if $\vec{k} \neq \vec{k}^{\prime}$.
(d) What determines $k_{\text {max }}$?

