2. Scattering from a spherical potential:
(a) Calculate the differential cross-section, $d \sigma / d \Omega$, for a particle of mass m scattering from a spherical potential $V(r)=V_{0} e^{-(r / a)^{2}}$ using the first-order Born approximation. You may need the integral

$$
\int_{0}^{\infty} \sin r e^{-(r / b)^{2}} r d r=\frac{\sqrt{\pi}}{4} b^{3} e^{-b^{2} / 4}
$$

(b) Calculate the total cross-section. It may be helpful to use the representation $\left|\vec{k}-\vec{k}^{\prime}\right|=2|\vec{k}| \sin (\theta / 2)$, where θ is the angle between \vec{k} and \vec{k}^{\prime}.
(c) What are the conditions on V_{0}, a and/or k for the first-order Born approximation to be valid?

