- 2. Consider a Fermi gas of N non-interacting particles in d dimensions where each particle has kinetic energy K.E. $= a |\vec{p}|^{\nu}$. The Fermi gas is placed in a box of volume V. Here, a and ν are positive constants, and N is assumed to be very large.
 - (a) The Fermi energy can be written approximately as $E_F \approx \gamma N^{\lambda}$ for some γ and λ . Determine the exponent λ in terms of d and ν .
 - (b) How does the heat capacity scale with temperature and the number of particles at small temperatures? Give the answer in terms of λ .
 - (c) For this Fermi gas at temperature T > 0 the pressure P is related to the total energy E through $P = \alpha E/V$. Find α in terms of ν and d.

<u>Hint</u>: P may be expressed through an appropriate derivative of the partition function. Think about how the energy of any given state changes with V.

(d) For a relativistic Fermi gas in 3 dimensions $\nu = 1$. For this case derive $P = \alpha E/V$ also from the kinetic theory, with P expressed as the force per unit area exerted by the gas particles on the walls of the container.