Adiabatic demagnetization

- 3. Consider a classical ideal gas of identical non-interacting particles of mass m in a container of volume V at initial temperature T_i . Let the particles have spin one-half and magnetic moment μ , and let the container be placed in a strong magnetic field H.
 - (a) Compute the classical partition function for this system, taking proper account of particle identity. It may help you to know that the partition function for a single classical particle (ignoring the spin degree of freedom) is $Z_1 = n_Q V$ where $n_Q = (mkT/2\pi\hbar^2)^{3/2}$.
 - (b) Calculate the total energy and entropy for this system
 - (c) Now suppose that the container is thermally isolated and that the magnetic field is slowly reduced (i.e. adiabatically). Show that the temperature decreases continuously as H is decreased.
 - (d) Show that if H is reduced all the way to zero the final temperature satisfies the inequality $T_i > T_f > 2^{-\frac{2}{3}}T_i$.