Section A. Quantum Mechanics

1. Perturbed Harmonic Oscillator (MR solution)

A particle of mass m moves one-dimensionally in a static harmonic oscillator potential

$$
V=\frac{1}{2} m \omega^{2} x^{2}
$$

It is also acted on by a space-time dependent perturbation potential $W(x, t)$ that is narrowly localized around a point $x_{0}(t)$ in space that moves with time. To simulate this, take the delta function expression

$$
W=\lambda \delta\left(x-x_{0}(t)\right)
$$

where λ parametrizes the potential strength.
Let $x_{0}(t)=v t$ for some velocity v and suppose that the particle was in the oscillator ground state $u_{0}(x)$ in the remote past (at time $t \rightarrow-\infty$). What is the probability that the particle will be found in the first excited oscillator state $u_{1}(x)$ in the remote future? Treat W as a small perturbation and work out the answer to lowest order in λ. Sketch the dependence of the transition probability on v and identify the value of v that maximizes the transition probability.
You are reminded that

$$
u_{0}=\left(\frac{1}{\pi a^{2}}\right)^{1 / 4} \exp \left(-x^{2} / 2 a^{2}\right), \quad u_{1}=\sqrt{2} \frac{x}{a} u_{0}, \quad a=\sqrt{\frac{\hbar}{m \omega}} .
$$

