Section B. Statistical Mechanics and Thermodynamics

1. String Thermodynamics

An elastic string is found to have the following properties:

- To stretch it to a total length x requires a force $f = \mu x \alpha T + \beta T x$. Assume that α , β , μ are constants.
- Its heat capacity at constant length x is proportional to temperature: C(x) = A(x)T.

We can use thermodynamic identities to derive from these facts a variety of other thermal properties. More specifically:

- (a) Calculate $\frac{\partial S}{\partial x}|_T$.
- (b) Show that A has to be independent of x.
- (c) Calculate $\frac{\partial S}{\partial T}|_x$ and give the general expression for entropy S(x,T) assuming S(0,0) = B, where B is a constant.
- (d) Compute the heat capacity at zero tension $C_F = T \frac{\partial S}{\partial T}|_{f=0}$.