2. Long Antenna Pattern

A thin, straight, conducting wire centered on the origin and oriented along the z-axis carries a current

$$I = \hat{z}I_0 \cos \omega t$$

everywhere along its length ℓ . This antenna will radiate electromagnetic waves with frequency ω and wavelength $\lambda = 2\pi c/\omega$. We will not assume that $\ell \ll \lambda$.

- (a) Because of the current, a time-dependent charge q(t) will accumulate at the two ends of the wire. Give expressions for the charge and current densities $\rho(\vec{x},t)$ and $\vec{j}(\vec{x},t)$ on the wire. Show that the electric dipole moment of this charge distribution satisfies $p(t) = p_0 \sin(\omega t)$ and evaluate p_0
- (b) Use these source densities to construct the scalar and vector potentials everywhere outside the source region $(r \gg \ell)$. Do not assume anything about the relative magnitudes of ℓ and λ . Do state the gauge you are using.
- (c) Compute the angular distribution of the energy flux radiated from this antenna. Show that it reduces to the standard electric dipole radiation pattern when $\lambda \gg \ell$. For general λ , show that the energy flux radiated perpendicular to the \hat{z} direction depends only on the maximum electric dipole moment p_0 (and agrees with the standard electric dipole radiation result).